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The prime numbers are a random sequence of natural numbers, which
have been studied as far back as the ancient Greeks, with even Euclid con-
structing proofs in his ’Elements’. As they are a random sequence of num-
bers, it is impossible to find a formula or iterative process to accurately and
efficiently locate primes at a macroscopic scale.

The largest prime to have ever been found is 23, 249, 425 digits long and was
found using computational brute force in the Great Internet Prime Search
after almost 2 years of searching (for which the previous was 22, 338, 618
digits long); which, with the computation power at our disposal in the mod-
ern day, shows the difficulty of finding large primes.

The mystery that the primes wield reaches across all of number theory is
vast, and due to their random nature, many seemingly trivial results and
conjectures, such as Goldbach’s conjecture, appear very difficult to conceive
and construct proofs for, even when their implications can be relatively sim-
ple.

In my essay, I would like to focus primarily on the gaps between the prime
numbers, both in an arbitrary sense, and have a brief discussion on more
specific gaps between subsequent prime numbers, namely the twin prime
conjecture; and also wish to talk about the general density of the primes on
a macroscopic scale.

1 The Endless Sequence

In this chapter I want to focus on arguably the most important property of
the prime numbers: that there are infinitely many of them. If there were to
be finitely many, we would be able to construct a complete set of the prime
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numbers and analyse all their properties with ease. However, as we shall see
soon, this is not the case with the prime numbers, which leads rise to the
study of primes being far more difficult.

Before we prove the existence of infinitely many primes, we must first in-
troduce our first theorem, The Fundamental Theorem of Arithmetic, which
shall allow us to prove the main result in this chapter, and will prove key in
proving results later on:

Theorem 1.1 - The Fundamental Theorem of Arithmetic:

1. Every positive integer greater than 1 may be written as the product
of prime numbers

2. This product is unique up to permutations

A proof for this theorem may be found in MA132 Foundations.

The principle behind the existence of this theorem is very intuitive. Prime
numbers, by definition, may not be factored further than themselves, so
therefore it makes sense that they can be viewed as the ’building blocks’ of
the natural numbers. The uniqueness part of this theorem is more subtle,
but also follows from the composition of natural numbers, and the concept
of equivalence between numbers.

The Fundamental Theorem of Arithmetic is very important to the study of
the prime numbers, as allows us to form a connection between the primes;
which are very unpredictable and rare as they get large; and the natural
numbers, for which we have a vast understanding, and can easily construct
proofs with.

Now on to the main theorem of this section, the proof that there are in-
finitely many prime numbers. This has been proved using various different
methods; but our proof, originally discovered by Euler, gives rise to a result
which will be useful later:

Theorem 1.2: There are infinitely many prime numbers

Note: Throughout this essay, we will denote the set of prime numbers
by P
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Proof: First we consider the following:

∏
p∈P

∑
k≥0

1

pk

 =

∑
k≥0

1

2k

∑
k≥0

1

3k

∑
k≥0

1

5k

 . . .

=
∑

k,l,m,...≥0

1

2k · 3l · 5m · . . .

=
1

20 · 30 · 50 · . . .
+

1

21 · 30 · 50 · . . .
+

1

20 · 31 · 50 · . . .
+ . . .

By the Fundamental Theorem of Arithmetic, ∀n ∈ N>1∃! prime factorisation
s.t. n = 2k2 · 3k3 · 5k5 · . . . for ki ≥ 0

⇒
∏
p∈P

∑
k≥0

1

pk

 =
1

1
+

1

2
+

1

3
+ . . .

=
∞∑
n=1

1

n

As p is prime, we know that 1
p < 1, meaning

∑
k≥0

1
pk

= 1
1− 1

p

by the formula

for infinite geometric series.

∴
∏
p∈P

(
1

1− 1
p

)
=

∞∑
n=1

1

n

As we know the RHS diverges, and that every term in the LHS is finite, this
means that the LHS must be an infinite product. This in turn means that
there are infinitely many prime numbers. (Dunham, 1999)

Unsurprisingly, this theorem holds. We shall discuss the connotations of
there being infinitely many primes later, but for now, we shall prove and
discuss as different result which will allow us an insight into the density of
the primes:

Theorem 1.3:
∑

p∈P
1
p diverges

Proof: We have already shown that:
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∞∑
n=1

1

n
=
∏
p∈P

(
1

1− 1
p

)

⇒ log

[ ∞∑
n=1

1

n

]
= log

∏
p∈P

(
1

1− 1
p

)

=
∑
p∈P

log

(
1

1− 1
p

)

=
∑
p∈P
− log

(
1− 1

p

)

=
∑
p∈P

(
1

p
+

1

2p2
+

1

3p3
+ . . .

)

=
∑
p∈P

(
1

p

)
+

1

2

∑
p∈P

(
1

p2

)
+

1

3

∑
p∈P

(
1

p3

)
+ . . .

We know that
∑∞

n=1
1
nk converges ∀k > 1, meaning that

∑
p∈P

(
1
pk

)
con-

verges ∀k > 1.

∴ log

[ ∞∑
n=1

1

n

]
=
∑
p∈P

+N(∗)

where

N =
∞∑
i=2

1

i

∑
p∈P

(
1

pi

) ∈ R

This means that because the LHS of (∗) is infinite, the RHS is also infinite.
So as N ∈ R⇒

∑
p∈P

1
p diverges. (Dunham, 1999)

This is quite an interesting result when we analyse it further. We know
from MA131 that the sums of the reciprocals of the square numbers con-
verges to π2

6 (otherwise known as the Basel Problem). Therefore, if we
compare the sequences of the partial sums of each series, we can compare
their term by term progressions. We know that by the comparison test, if
the sequence of partial sums is eventually less than that of a convergent
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series, than that series itself converges. This means that because the infinite
series of reciprocals prime numbers diverges, there reaches a point where its
sequence of partial sums is always greater than that of the squares. This in
turn means that the prime numbers are denser than the squares.

This is an interesting result as it is known that the nth and (n − 1)th

square numbers differ by the nth odd number, so it is well understood how
the squares are distributed in the natural numbers, and they appear to be
seemingly frequently, especially considering that there is a 1-million-digit
difference between the largest two known prime numbers as mentioned be-
fore.

This result may be applied to other series of natural numbers and their
reciprocals, such as the cubes, to gage how the primes are distributed in on
the macrocosmic scale.

2 Arbitrary Gaps

We have gauged the density of the primes in comparison with other se-
quences of natural numbers, but here we shall explore the possibility of
having ’arbitrary’ lower and upper bounds between subsequent prime num-
bers.

To begin, we shall investigate constructing lower bounds for gaps between
prime numbers, of any size. Naturally, due to the random and infinite na-
ture of the prime numbers, one would expect any gap between consecutive
prime numbers to occur, and nevertheless infinitely often.

Now let us compose one of these intervals:
Let n ∈ N
Consider n! = 1 · 2 · . . . (n− 1) · n

⇒ ∀i = 1, 2, . . . , n : n | n!
⇒ ∀i = 2, . . . , n : n+ i - n! + i
⇒ ∀m ∈ [n! + 2, n! + n],m /∈ P

Therefore; there are gaps between prime numbers of size at least n-1.
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Obviously for this construction, as n gets very large, these gaps appear sev-
eral orders of magnitude apart from each other, which seemingly becomes
obsolete, but it does however prove the existence of gaps between prime
numbers that get arbitrarily large.

This result does have some sense to it. The conditions for a number to
be prime become increasingly difficult to satisfy as they become large; as for
a prime number p, all numbers up to

√
p inclusive must be verified to not

factor into p.

However, this does not tell the whole story. In a similar way to a lower
bound for gaps between prime numbers, we are able to construct a max-
imum interval between two consecutive primes. However, as we shall see,
this gap does indeed become arbitrarily large.

We shall now investigate Bertrand’s Postulate, a statement that gives us
such a bound between prime numbers. However, we must prove a series of
lemmas which will ultimately allow us to prove this theorem.

Firstly we shall define:

Cn :=

(
2n

n

)

We shall be using a proof by contradiction for our proof of Bertrand’s Pos-
tulate, where we create a false inequality using Cn and its prime factors.
This brings us to our first lemma:

Lemma 2.1: ∀n ∈ N:

Cn ≥
4n

2n
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Proof:

4n = 22n

= (1 + 1)2n

=
2n∑
k=0

(
2k

k

)

= 2 + 2

n−1∑
k=0

(
2k

k

)
≤ 2 + (2n− 1)

(
2n

n

)
≤ 2n

(
2n

n

)
= 2nCn

Now that we have produced a lower bound that we may use, we must now
search for an upper bound. This is a multi-step process and we shall begin
with our next lemma:

Lemma 2.2: ∀n ∈ N, none of the prime powers of Cn, that is to say
the greatest power of prime factors that divide Cn, exceed 2n

Example: Let n = 4: Cn = 70 = 2 · 5 · 7. 21,51,71 < 2(4) = 8.

Proof: Let n ∈ N, p ∈ P

We shall denote the highest power k of p s.t. pk | n by vp(n)

Notice that vp(n) =
⌊
n
p

⌋
+
⌊
n
p2

⌋
+ . . .; and if pk > n then

⌊
n
pk

⌋
= 0

Cn =

(
2n

n

)
=

(2n)!

2(n!)

⇒ vp(Cn) = vp((2n)!)− 2vp(n!)

=

(⌊
2n

p

⌋
− 2

⌊
n

p

⌋)
+

(⌊
2n

p2

⌋
− 2

⌊
n

p2

⌋)
+ . . .

If pk > 2n (> n), then
(⌊

2n
pk

⌋
− 2

⌊
n
pk

⌋)
= 0− 2(0) = 0
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∀a, b > 0, ba+ bc − bac − bbc = 0 or 1⇒ b2ac − 2bac = 0 or 1

∴ For pk ≤ 2n:
(⌊

2n
pk

⌋
− 2

⌊
n
pk

⌋)
= 0 or 1

⇒ vp(Cn) ≤ k for the largest integer k s.t. pk ≤ 2n
⇒ pvp(Cn) ≤ 2n

We now have the first component of our upper bound, but we still need
more information to complete our proof.

Our next proposition will narrow down the interval in which we find the
prime factors of Cn, allowing our proof to develop more easily.

Lemma 2.3: Let n ∈ N, p ∈ P\{2} with 2n
3 < p < n. Then p - Cn.

Proof:
Case 1: n ≤ 4

2,3 are the only primes less than or equal to 4
⇒ p = 3
This means that we only need to consider C4 = 8: 3 - 8
∴ True for n ≤ 4

Case 2: n > 4
2n
3 < p < n
⇒ 1

n <
1
p <

3
2n

⇒ 1 < n
p <

3
2

⇒ 2 ≤
⌊
2n
p

⌋
< 3 and 2 ≤ 2

⌊
n
p

⌋
< 3

⇒
⌊
2n
p

⌋
= 2

⌊
n
p

⌋
= 2

⇒
⌊
2n
p

⌋
− 2

⌊
n
p

⌋
= 0

For k ≥ 2: nk−1 > 3
(
3
2

)k−1
⇒
(
2k+1

) (
nk−1

)
> 3k · 2n

⇒
(
2n
3

)k
> 2n

⇒ pk > 2n

∴ For k ≥ 2,
⌊
2n
pk

⌋
− 2

⌊
n
pk

⌋
= 0

Recall that: vp(Cn) =
∑

k

⌊
2n
pk

⌋
− 2

⌊
n
pk

⌋
⇒ vp(Cn) = 0for 1

n <
1
p <

3
2n

⇒ p - Cn for n > 4
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∴ ∀n ∈ N, n ∈ P s.t. 2n
3 < p < n, p - Cn

Definition: We shall define the Primorial Function:

x# :=
∏
p∈P
p≤x

p

with
1# = 1

Lemma 2.4: Let n ∈ N, n# < 4n

Proof:
n = 1, 1# < 41

n = 2, n# < 42

Suppose k# < 4k ∀k < n ∈ N

If n /∈ P, n# = (n− 1)# ≤ 4n < 4n−1

If n ∈ P>2, n = 2m+ 1 for m ∈ N(
2m+ 1

m

)
=

(2m+ 1)!

(m!)((m+ 1)!)

⇒
(
2m+1
m

)
is divisible by all primes p where m+ 1 < p < 2m+ 1

 ∏
p∈P

m+1<p≤x

p

∣∣∣∣(2m+ 1

m

)

⇒ (2m+ 1)#

(m+ 1)#

∣∣∣∣(2m+ 1

m

)
⇒ (2m+ 1)#

(m+ 1)#
≤
(

2m+ 1

m

)
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Now: (
2m+ 1

m

)
<

(
2m+ 1

0

)
+

(
2m+ 1

1

)
+ . . .+

(
2m+ 1

m

)
=

1

2

[(
2m+ 1

0

)
+

(
2m+ 1

1

)
+ . . .+

(
2m+ 1

2m+ 1

)]
=

1

2

(
22m+1

)
= 22m

= 4m

⇒ (2m+ 1)# < 4m(m+ 1)#

By Supposition, as m+ 1 < n, (m+ 1)# < 4m+1

⇒ (2m+ 1)# < 4m · 4m+1 = 42m+1

⇒ n# < 4n

∴ If true for k < n, it is true for n.
∴ By the Principle of Induction, n# < 4n∀n ∈ N

We now must construct a more general form of this lemma:

Corollary 2.5: Let n ∈ R+, n# < 4n

Proof: We have already proved this for a natural number n, so all that
is left is to prove it for n ∈ R+\N

Suppose n ∈ R+\N
⇒ n /∈ P
⇒ n# = bnc# < 4bnc ≤ 4n

Now we have all of the ingredients we need for our proof of Bertrand’s
Postulate, but first let’s formally state it:

Theorem 2.6 - Bertand’s Postulate: Let n ∈ N. Then ∃p ∈ P s.t.
n ≤ p ≤ 2n

An equivalent statement would be to say that pn+1 < 2pn, where pn de-
notes the nth prime number.

Proof: Suppose ∃n ∈ N s.t. @p ∈ P s.t. n ≤ p ≤ 2n

Case 1: n ≤ 4
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We shall do this by counter example, as some of our inequalities do not
hold for this case.

n = 1: p = 2 ∈ [1, 2]
n = 2: p = 3 ∈ [2, 4]
n = 3: p = 5 ∈ [3, 6]
n = 4: p = 7 ∈ [4, 8]
∴ by counter examples, we have shown that it is true for n ≤ 4.

Case 2: n > 4
All factors of (2n)! are less than 2n, so by the definition of Cn, all factors

of Cn (and thus all of its prime factors) are less than 2n.
∴ by our supposition, all the prime factors of Cn are less than n.
∴ by Lemma 2.3, none of the prime factors are greater than 2n

3
By FTA, we can write Cn as the product of its prime factors:

Cn = pak1 · p
a2
2 · . . . p

ak
k

where pi are prime numbers and ai > 0.
As n > 4⇒

√
2n < 2n

3
Consider the following form of Cn = P1 · P2, where

P1 =
∏

pi≤
√
2n

paii , P2 =
∏

√
2n<pi≤ 2n

3

paii

By Lemma 2.2, no terms in P1 exceed 2n

⇒ P1 =
∏

pi≤
√
2n

paii ≤
b
√
2nc∏

k=1

2k ≤ (2n)
√
2n(∗)

For pi >
√

2n, pki > 2n for k > 2

⇒ P2 =
∏

√
2n<pi≤ 2n

3

paii =
∏

√
2n<pi≤ 2n

3

pi <
∏
pi≤ 2n

3

pi =

(
2n

3

)
#

⇒By Corollary 2.5: P2 < 4( 2n
3 )(∗∗)

(∗) and (∗∗)⇒ Cn = P1P2 ≤ (2n)
√
2n · 4( 2n

3 )

By Lemma 2.1: Cn ≥ 4n

2n

∴
4n

2n
≤ Cn ≤ (2n)

√
2n · 4( 2n

3 )
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For n > 467: (2n)
√
2n · 4( 2n

3 ) ≤ 4n

2n ⇒⇐
Now all that remains for n ∈ (4, 467], is to give a sequence of prime

numbers, ending greater than 467, where each prime is no greater than
double the last:

5, 7, 13, 23, 43, 83, 163, 317, 631

∴ Supposition false ∀n ∈ N
∴ Bertrand’s Postulate Holds (Proof of Bertrands Postulate, n.d.)

We have indeed already proved that there are infinitely many primes, and
that they are relatively dense compared to other sequences of natural num-
bers, but Bertrands postulate brings us one step closer to realising the true
nature of the distribution of prime numbers, and it implies that irrespec-
tive of how large you may choose a prime number to be, there will always
be another within a known distance. However, as with the argument with
arbitrarily large gaps between prime numbers, this bound becomes incredi-
ble large, especially when considering prime numbers which are millions of
digits long.

3 The Prime Number Theorem

When discussing the density of the prime numbers, it would be ideal for
us to have some sort of formula or iterative process such that we can cal-
culate the number of primes either less than a given integer, or between
two given integers. However, due to the random nature of the prime num-
bers, no such a formula/such process is not known, and likely does not exist.

This then breeds the question as to whether there is a way of estimating the
general vicinity of primes numbers and thus their general density, especially
when considering large integers, where we know that large prime numbers
are very difficult to locate.

We shall define π(x) := ”The number of primes less than x”

When Gauss was young, he conjectured that π(x) ∼ x
log x (shock Gauss

was clever), which was later proved by Jacques Hadamard and Charles Jean
de la Valle-Poussin in the 19th century using the Riemann Zeta Function,
and has been coined the Prime number Theorem. (Selberg, 1949)
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Firstly, notice that this is a strictly increasing function (as ∀x, x > log x)
which coincides with our theorem that there are infinitely many prime num-
bers.

Now, we shall take a look at the growth of this function, as we have pre-
viously mentioned that the primes become scarcer as they become large.
Taking the first derivative of x

log x we can look at its rate of growth at x:

We shall by first defining:

f(x) =
x

log x

⇒ f ′(x) =
log x− 1

(log x)2
=

1

logx
− 1

(logx)2

1
(logx)n > 0 is a decreasing function for n ≥ 1, so as 1

logx −
1

(logx)2
, we have

that f ′(x) is a strictly positive, decreasing function. This then implies that
f(x) is always increasing, but the rate at which it grows decreases logarith-
mically as x gets large.

This notion further exemplifies that the primes do, in general, get further
apart as they get larger, as we have π(x) ∼ f(x).

Furthermore, as 1
logx −

1
(logx)2

decreases logarithmically, this means that the
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sparseness between primes begins to even out, as the rate at which f ′(x)
decreases, also decreases. This gives rise to an apparent homogeneity in the
prime numbers over large values of x (because when we take very large a, b
with a < b, we see that π(b) − π(a) = 0 for more values of a and b as they
get large).

Rearranging the relation for π(x), we obtain pn ∼ n log n, where pn de-
notes the nth prime number. On the search for a formula to locate prime
numbers, this proves a valuable estimate, especially for large values of n.

For example, if we consider the 100th prime number, 541; using the re-
lation above we obtain p100 ≈ 461 (a 15% error), but if we consider the
1000000th prime number 15,485,863 with corresponding estimate p1000000 ≈
13,815,511; we have a 10% error - which displays an increase in precision for
this relation as n gets larger.

When considering prime numbers of millions of orders of magnitude, even
a 0.0001% error interval too large to find primes, even with the powers of
modern computing, making this relation very useful when estimating large
prime numbers.

Having such a tool for locating prime numbers is important in areas such a
cryptography, where the fundamental principles rely on having strong, hard
to locate prime numbers.

4 The Twin Prime Conjecture

So far, we have discussed the general density of the primes over the macro-
scopic scale, and arbitrary bounds which can be constructed which allow us
to limit where we might find primes relative to each other.

Here, we shall discuss the possibility of a specific lower bound for the gaps
between consecutive prime numbers which occurs infinitely often, and the
reasons for the existence of such a lower bound, if it does indeed exist.

As there is only one even prime number, it is evident that there is no possibil-
ity of infinitely many intervals of size 1 between subsequent prime numbers,
so we shall discuss the next smallest option: Twin Primes.
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Definition: A pair of prime numbers x, y are called Twin Primes if they
have a difference of 2

As we have proven that there are indeed infinitely many prime numbers,
one would intuitively think that there would be infinitely many cases of
these twin primes existing. If this was not the case, this would imply that
there would be a maximal case, after which there would be no further ex-
amples. If such a maximal case did exist, this would raise the question as to
why such a point in the natural numbers occurs and could potentially give
great insight into the prime numbers.

Conjecture 4.1 - Twin Prime Conjecture: There are infinitely many
cases of twin primes

As mentioned before, all the prime numbers (excluding 2) are odd, which in
turn means they all take the form of either 4k+1 or 4k+3 for some natural
number k, which gives us a sensible place to start. If such a point where
twin primes cease to occur were to exist, one reason might be that there are
only finitely many examples of primes being of the form 4k + 1 or 4k + 3.
So now we shall examine this with the help of the following theorem:

Theorem 4.2 - Fermat’s Little Theorem: Let p ∈ P, a ∈ Z. Then
ap−1 ≡ 1(mod p)

This theorem was proved in MA136 Introduction to Abstract Algebra, and
will allows us the prove the following two lemmas:

Lemma 4.3: There are infinitely many primes of the form 4k+ 1 for k ∈ N

Proof: Let N ∈ N, N ≥ 2

Consider M = (N !)2 + 1
∀x s.t. 1 < x ≤ N , x -M (as x | N !⇒ x | (N !)2)

By FTA, M may be written as a product of its prime factors
⇒ ∃p ∈ P s.t. p |M

As p ∈ P, p > N

M ≡ 0(mod p)
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⇒ (N !)2 ≡ −1(mod p)

⇒ [(N !)2]
p−1
2 ≡ [−1(mod p)]

p−1
2

⇒ (N !)p−1 ≡ (−1)
p−1
2 (mod p)

By Fermat’s Little Theorem: (N !)p−1 ≡ 1(mod p)

⇒ 1(mod p) ≡ (−1)
p−1
2 (mod p)

As N ≥ 2⇒ p is odd
⇒ −1 6≡ 1(mod p)

⇒ 1 ≡ (−1)
p−1
2

This equation only holds when p−1
2 is even

⇒ ∃k ∈ N s.t. p−1
2 = 2k

⇒ p− 1 = 4k
⇒ p = 4k + 1 > N

This means that if there were to be a finite set of primes of the 4k + 1,
with the largest being p0, we can take N > p0 and construct a p1 ∈ P with
p1 > p0

∴ There are infinitely many primes of the form 4k+1 (Apostol, 2013)

Now that we have proved that there are infinitely many primes of the form
4k+ 1, we must now check that there are infinitely many primes of the form
4k + 3 to ensure that our suspicion was false.

Lemma 4.4: There are infinitely many primes of the form 4k + 3, k ∈ N

Proof: Our proof shall use contradiction

Suppose that there are finitely many primes of the form 4k + 3
Let this set of primes be {p1, p2, . . . , pn}

Consider N = (p1 · p2 · . . . pn)2 + 2 (notice that N is odd)
For i = 1, . . . , n: pi - N

By FTA, N may be written as the product of its prime factors.
As pi - N ∀i, they are all of the form 4k + 1
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Let p ∈ P s.t. p | N
As p = 4k + 1⇒ p ≡ 1(mod 4)

N = (p1 · p2 · . . . pn)2 + 2
⇒ N − 2 = (p1)

2 · (p2)2 · . . . · (pn)2

For i = 1, . . . , n pi ≡ 3(mod 4)
⇒ p2i ≡ 1(mod 4)
⇒ (p1)

2 · (p2)2 · . . . · (pn)2 ≡ 1(mod 4)
⇒ N − 2 ≡ 1(mod 4)
⇒ N ≡ 3(mod 4)
⇒ p - N which contradicts that p is a prime factor of N (MT 430 Intro
to Number Theory PROBLEM SET 2 , n.d.)

As we have shown, this suggestion for a counter proof for the Twin Prime
conjecture did not yield any useful results about the existence of maximal
twin primes. This indeed points us towards the conjecture being true.

Twin primes have been studied extensively, and a more general conjecture
was posed, stating that all even gaps between prime numbers occur infinitely
often, but neither this nor the twin prime conjecture have had proofs con-
structed for them to this day.

Recently, there have been some major breakthroughs in this the proving of
this conjecture, most notably by James Maynard and Terrance Tao, which
have led to the result:

lim inf
n→∞

(pn+1 − pn) ≤ 600

(Maynard, 2013)
This huge discovery, coupled with an ongoing Polymath project, may one
day uncover the proof of the Twin Prime Conjecture, or we may need to
find a completely new way of analysing this unsolved mystery to finally tame
this problem.
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